Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The gravitational wave detectors used by the LIGO Scientific Collaboration, and the Virgo Collaboration are incredibly sensitive instruments which frequently detect non-stationary, non-Gaussian noise transients. iDQ is a statistical inference framework which leverages the use of auxiliary degrees of freedom monitored in the detectors to identify such transients. In this work, we describe the improvements to the iDQ pipeline made between the third and fourth observing run of the LIGO-Virgo-KAGRA (LVK) collaboration, and show the performance of these changes. We find that iDQ detects a total of 39,398 of the known 100,512 glitches identified by Omicron over the course of the second half of the third observing run. We construct a measure of the probability a glitch is present in the strain data of a given detector by combining information from iDQ and Omicron as well as extend the output of iDQ in a novel method which finds correlations between known glitch classifications, and auxiliary channels. We identify several channels over the course of O3b which frequently record instances of Scattered Light, Whistle, and Blip glitches and discuss use cases for this method in active observing runs.more » « lessFree, publicly-accessible full text available December 5, 2025
-
We present a new method which accounts for changes in the properties of gravitational-wave detector noise over time in the PyCBC search for gravitational waves from compact binary coalescences. We use information from LIGO data quality streams that monitor the status of each detector and its environment to model changes in the rate of noise in each detector. These data quality streams allow candidates identified in the data during periods of detector malfunctions to be more efficiently rejected as noise. This method allows data from machine learning predictions of the detector state to be included as part of the PyCBC search, increasing the total number of detectable gravitational-wave signals by up to 5%. When both machine learning classifications and manually generated flags are used to search data from LIGO-Virgo’s third observing run, the total number of detectable gravitational-wave signals is increased by up to 20% compared to not using any data quality streams. We also show how this method is flexible enough to include information from large numbers of additional arbitrary data streams that may be able to further increase the sensitivity of the search.more » « less
-
Unexpectedly strong X-ray emission from extragalactic radio jets on kiloparsec scales has been one of the major discoveries of Chandra, the only X-ray observatory capable of sub-arcsecond-scale imaging. The origin of this X-ray emission, which appears as a second spectral component from that of the radio emission, has been debated for over two decades. The most commonly assumed mechanism is inverse-Compton upscattering of the cosmic microwave background by very low-energy electrons in a still highly relativistic jet. Under this mechanism, no variability in the X-ray emission is expected. Here we report the detection of X-ray variability in the large-scale jet population, using a novel statistical analysis of 53 jets with multiple Chandra observations. Taken as a population, we find that the distribution of P values from a Poisson model is strongly inconsistent with steady emission, with a global P value of 1.96 × 10−4 under a Kolmogorov–Smirnov test against the expected uniform (0, 1) distribution. These results strongly imply that the dominant mechanism of X-ray production in kiloparsec-scale jets is synchrotron emission by a second population of electrons reaching multi-teraelectronvolt energies. X-ray variability on the timescale of months to a few years implies extremely small emitting volumes much smaller than the cross-section of the jet.more » « less
-
Multimessenger searches for binary neutron star (BNS) and neutron star-black hole (NSBH) mergers are currently one of the most exciting areas of astronomy. The search for joint electromagnetic and neutrino counterparts to gravitational wave (GW)s has resumed with ALIGO’s, AdVirgo’s and KAGRA’s fourth observing run (O4). To support this effort, public semiautomated data products are sent in near real-time and include localization and source properties to guide complementary observations. In preparation for O4, we have conducted a study using a simulated population of compact binaries and a mock data challenge (MDC) in the form of a real-time replay to optimize and profile the software infrastructure and scientific deliverables. End-toend performance was tested, including data ingestion, running online search pipelines, performing annotations, and issuing alerts to the astrophysics community. We present an overview of the low-latency infrastructure and the performance of the data products that are now being released during O4 based on the MDC. We report the expected median latency for the preliminary alert of full bandwidth searches (29.5 s) and show consistency and accuracy of released data products using the MDC. We report the expected median latency for triggers from early warning searches (−3.1 s), which are new in O4 and target neutron star mergers during inspiral phase. This paper provides a performance overview for LIGO-Virgo-KAGRA (LVK) low-latency alert infrastructure and data products using theMDCand serves as a useful reference for the interpretation of O4 detections.more » « less
An official website of the United States government
